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Treat all correlations in this

presentation with caution
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Using Social Media as a Communication Channel



Social Media as a Data Source

• Part 1: Three Example Studies

– Twitter Flu Trend

– Lifestyle and Correlates of Health

– Studying Obesity Through Food Tweets

• Part 2: Opportunities and Challenges

– Image Analysis

– Network Influence

– Social Media Meets Quantified Self

– Interventions for Individual Health
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Why Bother with Social Media?

• Lots of it

– Often also across countries

• Cheap to collect

– Keyword/geographic-based collection standard

• (Semi-)Longitudinal data

– Last 3,200 tweets, more for money

• Social network data

– Usually not part of surveys

• Lifestyle data

– Lifestyle diseases, public health

Later: Not



Example 1:

National and Local Influenza Surveillance 

through Twitter: An Analysis of the 2012-

2013 Influenza Epidemic

David Broniatowski, Michael Paul, 

Mark Dredze

PLOS ONE, Dec 2013
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Using Google to Track Flu Epidemics

Can Twitter give a

- more transparent prediction?

- more robust prediction (re context)?



Can We Do it (Better?) With Twitter?

• Many people have tried

– 40+ papers on the topic

• Typically a straightforward setup

– Collect Twitter data for a set of keywords (fever, …)

– Do some post-filtering (Saturday Night Fever)

– Show temporal correlation/predictive power

• Major weaknesses

– Only work with a single flu season

– Done in retrospect (hard to get historical data)



Recent Breakthrough?
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Tokens + SVM

Word classes (noun, …)

RT, @, Emoticons

Part-of-Speech tagging

Verb-phrases

Pairs with pronouns

Verb-noun pairs

…

Log-linear w/ L2 regulariz.
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How It Works

Tokens + SVM

Word classes (noun, …)

RT, @, Emoticons

Part-of-Speech tagging

Verb-phrases

Pairs with pronouns

Verb-noun pairs

…

Log-linear w/ L2 regulariz.

US-level: r = 0.93, p < .001

NYC-level: r = 0.88, p < .001



Example 2:

Modeling the Impact of Lifestyle on 

Health at Scale

Adam Sadilek, Henry Kautz

WSDM’13



Geo-Tagged “Sick” Tweets from NYC



Geo-Tagged “Sick” Tweets from NYC

What determines how healthy/sick a person is?

- Socio-economic variables?

- Social status?

- Mobility patterns?



Data Collection

• May 19 – June 19, 2010

• periodically queried Twitter r=100km of NYC

– Re Twitter streaming API?

• 16 million tweets, 630k unique users

• 6,237 users with 100+ geo-tagged tweets



Sick-or-Not SVM Classifier

• Cast to lower case & basic “cleaning”

• Extract uni-, bi- and tri-grams

• 5 MT workers label “sick” or “other”

• Train an SVM

• .98 precision, .97 recall (class distribution?)

• Convert SVM output to probability (Platt?)

• Probability of u’s message being “sick”



Discriminative Features



Variables to Study

• “Physical encounters”

– <100 m within 1, 4, 24 hours

• Sick friends (mutual following)

• 25k Google Places 

– Bars, nights clubs, transit stations, parks, gyms

– Tweeting within 100m of venue

• Pollution

• Socio-economic indicators

Predict PS using these variables



Correlation With Health (-PS)



Grouped by Variable Class



Example 3:

You Tweet What You Eat:

Studying Food Consumption Through 

Twitter

Sofiane Abbar, Yelena Mejova, 

Ingmar Weber

CHI’15



“Pointless Babble” == Great Data!

“Twitter Study Reveals Interesting Results - About Usage 40% is Pointless 

Babble” (Pear Analytics, 2009)



“Pointless Babble” == Great Data!

“Twitter Study Reveals Interesting Results - About Usage 40% is Pointless 

Babble” (Pear Analytics, 2009)

Can we use food tweets to study obesity patterns?



Data Collection

• Streaming API filter for “eat”, “cook”, “lunch”, …

• Collect 50M tweets during Nov 2013

• 892K geo-tagged tweets from 400K users

– Use (lat, long) to map to ZIP and census data

– Get data for 210K random user subset

• 3,200 public tweets, profile, friends, followers

• 503M tweets, 32M distinct friends

• Label eat-co-occurring terms as “is food”

– 460 uni- and bigrams with mapping to calories

– Pizza 478, fruit salad 99, … [link]

• Average calories for users
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Zooming-In to Counties

• Try to predict county-level obesity

– avCal

– Food names

– LIWC categories (re Culotta’14)

– Demographic

• Ridge regression with 5-fold cross validation



Prediction Performance



Social Network Effects

• Call a user in predicted top 10% “active”



Example n:

Lots of Studies

Lots of People

Lots of Venues



More Example Domains

• Finding Adverse Drug Reactions (ADRs)

• Tracking mental health

• Dedicated social media such as forums

• Social media for health communication

• …



Research Opportunities

And Challenges
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• Helps to model variation in “excessive drinking”

– Contact me for submission (under review)

Opportunity 1:

Mining Social Media Images
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Network Influence



Opportunity 2:

Network Influence

A person's chances of becoming obese increased by 57% (95% confidence interval [CI], 

6 to 123) if he or she had a friend who became obese in a given interval. Among pairs 

of adult siblings, if one sibling became obese, the chance that the other would become 

obese increased by 40% (95% CI, 21 to 60). If one spouse became obese, the likelihood 

that the other spouse would become obese increased by 37% (95% CI, 7 to 73).
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At the heart of the dispute is an old conundrum in social science: 

How certain can anyone be about conclusions based on 

observations of how people behave?

Opportunity 2:

Network Influence



Opportunity 2:

Network Influence

• No randomized controlled trial (RCT)

– Only observational data

• Hard to tease apart

– Homophily: friends are similar to you

– Environment: friends are exposed to similar factors

– Social influence: friends make you similar

• Possible solution: Natural experiments

– Weather?

– Local campaigns?
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Challenges

• Ethical
– Big Brother

– “Informed” Consent

• Attitudinal
– Medical doctors to listen

– “Social Media Cures Cancer”

• Data quality
– Selection bias: Who’s on Social Media? Who’s using QS?

– Reporting bias: Who tweets about food? About STDs?

• Lack of individual level ground truth
– Who has the flu? Who is obese? Who is smoking?

• Having interventions

– So far only communication-based interventions

– A/B testing on the “inside”



Twitter For Sociological Studies



Interested? - We’re hiring!

• Interns (all year around)

• Postdocs

• Scientists

• Engineers

Talk to me about “life in the desert”.



Tack! Thanks!


